Polynomial Acceleration for Restarted Arnoldi Iteration and its Parallelization
نویسندگان
چکیده
We propose an accelerating method for the restarted Arnoldi iteration to compute a number of eigenvalues of the standard eigenproblem Ax = x and discuss the dependence of the convergence rate of the accelerated iteration on the distribution of spectrum. The e ectiveness of the approach is proved by numerical results. We also propose a new parallelization technique for the nonsymmetric double shifted QR algorithm with perfect load balance and uninterrupted pipelining on distributed memory parallel architectures, which is strongly required from the viewpoint of complexity of the Arnoldi iteration. Its parallel e ciency is much higher than those reported in other papers.
منابع مشابه
Analysis of Accelerating Algorithms for the Restarted Arnoldi Iteration
We present an approach for the acceleration of the restarted Arnoldi iteration for the computation of a number of eigenvalues of the standard eigenproblem Ax = x. This study applies the Chebyshev polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues with far less complexity than the QR method. We also discuss the dependence of the convergence rate of th...
متن کاملEvaluation of Acceleration Techniques for the Restarted Arnoldi Method
We present an approach for the acceleration of the restarted Arnoldi iteration for the computation of a number of eigenvalues of the standard eigenproblem Ax = λx. This study applies the Chebyshev polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues with far less complexity than the QR method. We also discuss the dependence of the convergence rate of t...
متن کاملArnoldi-Faber method for large non hermitian eigenvalue problems
We propose a restarted Arnoldi’s method with Faber polynomials and discuss its use for computing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test problems, the benefit obtained from the Faber acceleration by comparing this method with the Chebyshev based acceleration. A comparison with the implicitly restarted Arnoldi method is also ...
متن کاملLeast Squares Arnoldi for Large Nonsymmetric Eigenproblems
In this paper, we propose a highly e cient accelerating method for the restarted Arnoldi iteration to compute the eigenvalues of a large nonsymmetric matrix. Its e ectiveness is proved by various numerical experiments and comparisons with other approaches. Several new results on the characteristics of the polynomial acceleration are also reported. The Arnoldi iteration has been the most popular...
متن کاملSome new restart vectors for explicitly restarted Arnoldi method
The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998